Der 108 Temperatursensor ist ein Thermistor, der in einem Epoxid-gefüllten Aluminumgehäuse eingebracht ist.Das Gehäuse schützt den Sensor und macht ihn ideal zur Verwendung im Boden oder unter Wasser.
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
Product | Compatible | Note |
---|---|---|
CR1000 (retired) | ||
CR300 (retired) | ||
CR3000 | ||
CR310 | ||
CR350 | ||
CR6 | ||
CR800 (retired) | ||
CR850 (retired) |
One single-ended channel per probe is required; an excitation channel can be shared by several probes.
When exposed to sunlight, the 108 should be housed in a 41303-5A, 41303-5B, or RAD06 6-plate radiation shield. The louvered construction of these radiation shields allows air to pass freely through the shield, thereby keeping the sensor at or near ambient temperature. The shields’ white color reflects solar radiation.
The RAD06 uses a double-louvered design that offers improved sensor protection from driving rain, snow, insect intrusion and has lower self-heating in bright sunlight combined with higher temperatures (> 24°C [~75°F]) and low wind speeds (< 2 m/s [~4.5 mph]), giving a better measurement.
The 41303-5A and RAD06 attach to a crossarm, mast, or user-supplied pipe with a 2.5 to 5.3 cm (1.0 in to 2.1 in.) outer diameter. The 41303-5B attaches to a CM500-series pole or a user-supplied pole with a 5.1 cm (2.4 in.) outer diameter.
The 108 is suitable for shallow burial only. Placement of the sensor’s cable inside a rugged conduit may be advisable for long cable runs—especially in locations subject to digging, mowing, traffic, use of power tools, or lightning strikes.
The sensor can be submerged to 15 m (50 ft) or 21 psi. Please note that the 108 is not weighted. Therefore, the installer should either add a weighting system or secure the sensor to a fixed, submerged object, such as a piling.
To measure large numbers of probes, the AM16/32B multiplexer is recommended.
Sensor Description | BetaTherm 100K6A1IA Thermistor |
Tolerance | ±0.2°C (over 0° to 70°C range) |
Temperature Measurement Range | -5° to +95°C |
Steinhart-Hart Equation Error | ≤ ±0.01°C over measurement range (CRBasic data loggers only) |
Polynomial Linearization Error | Typically < ±0.5°C over -5° to 90°C range (Edlog data loggers only) |
Time Constant in Air | 30 to 60 s (in a wind speed of 5 m s-1) |
Maximum Submergence | 15 m (50 ft) |
Maximum Cable Length | 305 m (1000 ft) |
Probe Diameter | 0.76 cm (0.3 in.) |
Probe Length | 10.4 cm (4.1 in.) |
Weight | 136 g (5 oz) with 3.05 m (10 ft) cable |
Number of FAQs related to 108: 4
Alle anzeigenWenige anzeigen
The thermistor is located approximately 3 mm (0.125 in.) back from the probe tip.
When these sensors are purchased, the following calibration services are offered: TEMPCAL and TEMPCAL2.
For both of these services, calibration can be made at different values if it is requested by the purchaser at the time of purchase. In addition, both of these calibration services can be requested after sensor purchase using a return material authorization (RMA) number. To request an RMA number, refer to the Repair and Calibration page.
The sensor/probe consists of a non-linear thermistor configured with a precision resistor in a half-bridge circuit, as shown in the product’s manual:
To measure the sensor/probe, the measurement device has to provide a precision excitation voltage (Campbell Scientific data loggers use 2000 mV), measure the voltage across the precision resistor, determine the thermistor resistance (Ohm's law), and convert the resistance to temperature using the Steinhart-Hart equation.
The Steinhart-Hart equation is 1/T = A + Bln(R) + C(ln(R))3 where:
For the 107-L, 107-LC, 108-L, and 108-LC, the following are the coefficients for the Steinhart-Hart equation:
For the 109-L, the following are the coefficients for the Steinhart-Hart equation:
Note the difference between calibration and a field check. Calibration cannot be done in the field, as it requires an experienced technician and specialized equipment.
Field checks of measurements can be done to determine if the data make sense with the real-world conditions. Follow these steps to field check a sensor: